Supplementary Information

In-situ Observation of Hierarchical Self-Assembly Driven by Bicontinuous Gelation in Mixed Nanodisc Dispersions

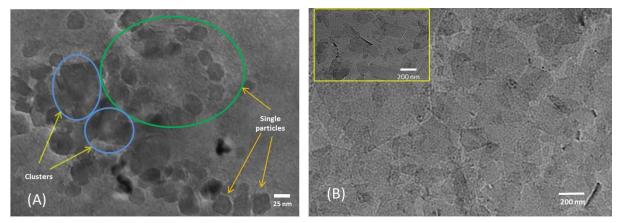
Ravi Kumar Pujala^{1,2,3}*, C.T.W.M. Schneijdenberg¹, Alfons van Blaaderen¹and H. B. Bohidar^{3,4}

¹Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

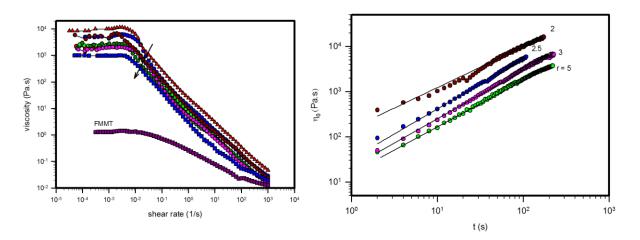
²School of Physics, University of Hyderabad, Hyderabad 500046, India

³Polymer and Biophysics Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India

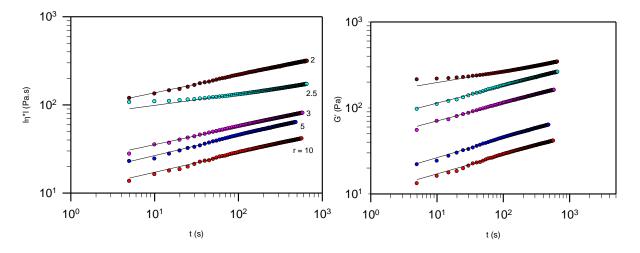
> ⁴Special Centre for Nanosciences, Jawaharlal Nehru University New Delhi, India

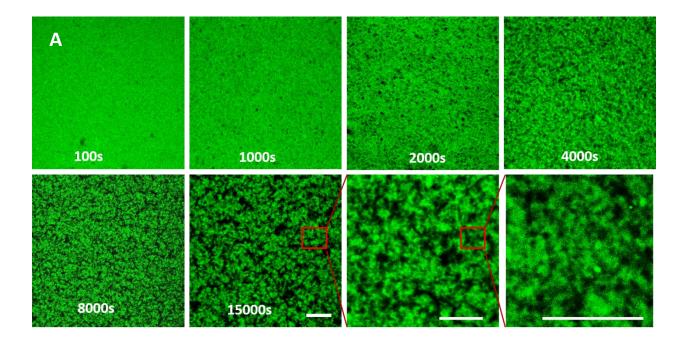

*Corresponding author email: <u>pujalaravikumar@gmail.com</u>

Supplementary Movies:


Movie S1: This movie shows the z-stack of bicontinuous gel for r = 5, shows the porous structure with well-defined network made of two nanoclays.

Characterization of nanoplatelets


Chemical structure of Laponite $Na^{+0.7}[(Si_8 Mg_{5.5} Li_{0.3}) O_{20} (OH)_4]^{-0.7}$


Figure S1 TEM images of Laponite (A) and Na-Montmorillonite (B). The individual particles and clusters are indicated as shown in figure. Laponite clay is monodisperse compared to Montmorillonite.

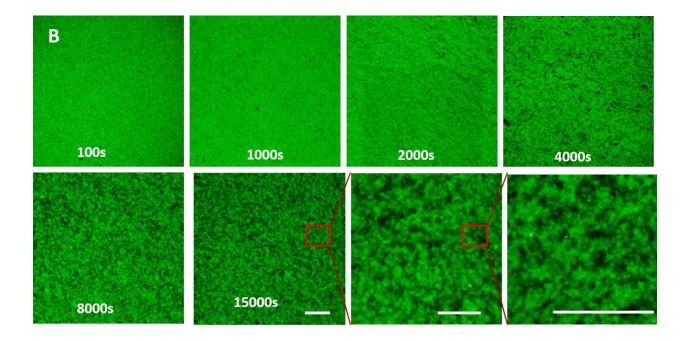


Figure S2 Flow curves and the zero-shear viscosity of the bicontinuous gels for different values of *r*.

Figure S3. Growth of complex viscosity and elastic modulus with the waiting time at different values of *r*.

Figure S4 Evolution of gel structure with aging for r = 3 (A) and 2.5 (B). Scare bar is 20 μ m.

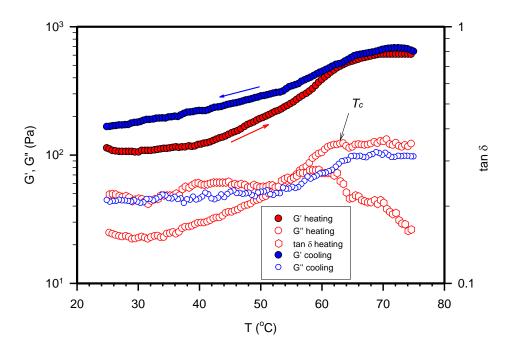
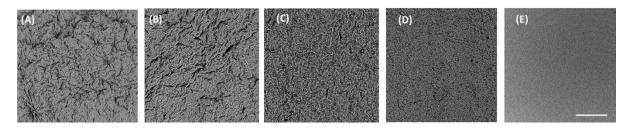



Figure S5. Temperature dependent rheological properties of the bicontinuous gel.

Figure S6 SEM images of dried films of FMMT, bicontinuous gels with ratios r = 8, 5, 3 and Laponite.

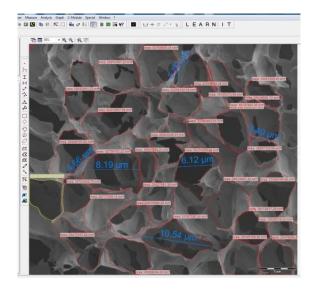


Figure S7 SEM analysis pore size and thickness of the branched of the BCG.

Clay	ρ (g/cc)	Aspect ratio (L/D) 25	CEC (meq/g)	D _{eff} (nm)	ζ (mV) -40 <u>+</u> 2	Physical state Concentration (c) dependent	
Laponite	2.53					c < 1	
						c > 3 Repulsive/Attractive glass Nematic	
Na-MMT	2.86	250	0.75	250	-32 <u>+</u> 2	c < 2.5 Phase Separation	
						$2.5 \le c \le 5$ Soft gels, Nematic	
						c > 5 Strong gels, Nematic	
L+MMT					Linear	c < 0.3 Stable sol	
					combination	$0.3 \le c \le 2.2$ Gel	
						c > 2.2 Glass, ordered glass	

Table S1: Physio-chemical Properties of clays of Laponite and Na-MMT.

Time\sample	MMT (5%)	Lap (3%)	1:0.15	1:0.30	1:0.60	1:1	1:1.5
Day 1	43	40	53	55	57	63	57
Day 5	47	42	56	56	58	65	59
Day 10	49	45	58	58	61	67	60

Table S2: Transition temperatures of bicontinuous gels made from different mixing ratios.